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Identification and validation of clinical phenotypes with 
prognostic implications in patients admitted to hospital 
with COVID-19: a multicentre cohort study
Belén Gutiérrez-Gutiérrez, María Dolores del Toro, Alberto M Borobia, Antonio Carcas, Inmaculada Jarrín, María Yllescas, Pablo Ryan, 
Jerónimo Pachón, Jordi Carratalà, Juan Berenguer, Jose Ramón Arribas, Jesús Rodríguez-Baño, on behalf of the REIPI-SEIMC COVID-19 group 
and COVID@HULP groups*

Summary
Background The clinical presentation of COVID-19 in patients admitted to hospital is heterogeneous. We aimed to 
determine whether clinical phenotypes of patients with COVID-19 can be derived from clinical data, to assess the 
reproducibility of these phenotypes and correlation with prognosis, and to derive and validate a simplified probabilistic 
model for phenotype assignment. Phenotype identification was not primarily intended as a predictive tool for mortality.

Methods In this study, we used data from two cohorts: the COVID-19@Spain cohort, a retrospective cohort including 
4035 consecutive adult patients admitted to 127 hospitals in Spain with COVID-19 between Feb 2 and March 17, 2020, 
and the COVID-19@HULP cohort, including 2226 consecutive adult patients admitted to a teaching hospital in Madrid 
between Feb 25 and April 19, 2020. The COVID-19@Spain cohort was divided into a derivation cohort, comprising 
2667 randomly selected patients, and an internal validation cohort, comprising the remaining 1368 patients. The 
COVID-19@HULP cohort was used as an external validation cohort. A probabilistic model for phenotype assignment 
was derived in the derivation cohort using multinomial logistic regression and validated in the internal validation 
cohort. The model was also applied to the external validation cohort. 30-day mortality and other prognostic variables 
were assessed in the derived phenotypes and in the phenotypes assigned by the probabilistic model.

Findings Three distinct phenotypes were derived in the derivation cohort (n=2667)—phenotype A (516 [19%] patients), 
phenotype B (1955 [73%]) and phenotype C (196 [7%])—and reproduced in the internal validation cohort (n=1368)—
phenotype A (233 [17%] patients), phenotype B (1019 [74%]), and phenotype C (116 [8%]). Patients with phenotype A 
were younger, were less frequently male, had mild viral symptoms, and had normal inflammatory parameters. Patients 
with phenotype B included more patients with obesity, lymphocytopenia, and moderately elevated inflammatory 
parameters. Patients with phenotype C included older patients with more comorbidities and even higher inflammatory 
parameters than phenotype B. We developed a simplified probabilistic model (validated in the internal validation cohort) 
for phenotype assignment, including 16 variables. In the derivation cohort, 30-day mortality rates were 2·5% 
(95% CI 1·4–4·3) for patients with phenotype A, 30·5% (28·5–32·6) for patients with phenotype B, and 60·7% 
(53·7–67·2) for patients with phenotype C (log-rank test p<0·0001). The predicted phenotypes in the internal validation 
cohort and external validation cohort showed similar mortality rates to the assigned phenotypes (internal validation 
cohort: 5·3% [95% CI 3·4–8·1] for phenotype A, 31·3% [28·5–34·2] for phenotype B, and 59·5% [48·8–69·3] for 
phenotype C; external validation cohort: 3·7% [2·0–6·4] for phenotype A, 23·7% [21·8–25·7] for phenotype B, and 
51·4% [41·9–60·7] for phenotype C).

Interpretation Patients admitted to hospital with COVID-19 can be classified into three phenotypes that correlate with 
mortality. We developed and validated a simplified tool for the probabilistic assignment of patients into phenotypes. 
These results might help to better classify patients for clinical management, but the pathophysiological mechanisms 
of the phenotypes must be investigated.
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Introduction
Patients admitted to hospital with COVID-19 show various 
clinical signs and symptoms and laboratory abnor-
malities.1–5 Some of these features have been found to be 
predictors of mortality.3,4 The reasons for this heterogeneous 
presentation are not fully understood. However, it could be 
related to factors such as viral load,6 partial immune 

protection due to previous infections with other corona-
viruses,7 genetic determinants,8 and other non-genetic-
mediated factors such as age and underlying conditions.3,4

We hypothesise that patients admitted to hospital with 
COVID-19 might be classified into few clinical patterns 
(phenotypes) according to their demographics, underlying 
conditions, signs, symptoms, radiological findings, 
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For the online phenotype 
assignment tool see http://fen-

covid.com/index.html
and laboratory data at presentation. If they exist, these 
phenotypes might denote different pathophysiological 
routes and outcomes and be useful for better classifying 
patients for testing and treatment strategies.

The objectives of this study were to determine whether 
clinical phenotypes of patients with COVID-19 can be 
derived from clinical data, to assess their reproducibility 
and correlation with prognosis, and to derive and validate a 
simplified probabilistic model for phenotype assignment.

Methods
Databases
In this study, we used data from two cohorts: 
the COVID-19@Spain cohort, a retrospective cohort 
including 4035 consecutive adult patients admitted to 
127 hospitals in Spain with COVID-19 between Feb 2 and 
March 17, 2020, and the COVID-19@HULP cohort, 
including 2226 consecutive adult patients admitted 
to a teaching hospital in Madrid between Feb 25 
and April 19, 2020. The cohort designs and patient 
characteristics were previously reported in detail.4,5 
41 patients in the COVID-19@HULP cohort who were 
also included in the COVID-19@Spain cohort were 
excluded from the COVID-19@HULP cohort for the 
current study (2185 remaining patients in this cohort). 
The COVID-19@Spain cohort was divided into a 
derivation cohort, comprising 2667 randomly selected 
patients, selected using the SPSS function for selection of 
random samples from a database, and an internal 
validation cohort, comprising the remaining 1368 patients. 
The COVID-19@HULP cohort was used as an external 
validation cohort. An overview of the analyses done in 
the derivation and validation cohort is shown in the 
appendix (p 19). The study was approved by the University 

Hospitals Virgen Macarena and Virgen del Rocío ethics 
committee (Seville, Spain), which waived the need 
to obtain written informed consent because of the 
observational nature of the study. STROBE recom-
mendations were followed (appendix pp 2–3).

We discussed the objectives of the study, the study 
design, and results with several health-care workers who 
had had COVID-19.

Phenotype derivation
We considered 69 variables to derive the clinical 
phenotypes. The variables were selected based on the 
available information about the features of patients 
admitted to hospital1–3 and the early clinical experience 
gained at the participating sites. All data were collected at 
hospital admission and included age, sex, race or ethnicity, 
comorbidities, drugs previously used for underlying 
diseases, COVID-19-related signs and symptoms at 
presentation, laboratory data, and chest radiographical 
data (table 1). As our objective was to explore the existence 
of phenotypes, we did not preselect any variables.

The proportion of missing data per variable in the 
COVID-19@Spain cohort is shown in the appendix (pp 5–6). 
The Little MCAR test was used to verify that missing data 
were at random, and imputation was done using the 
Markov chain Monte Carlo method.

Analyses to identify the phenotypes were first done in 
the derivation cohort. We assessed the distributions of 
values and missing data, and correlation among the 
variables, using the χ² test and Pearson’s correlation 
coefficient for categorical and continuous variables, 
respectively. We excluded highly correlated variables. We 
did a two-step cluster analysis using both continuous and 
categorical variables, which provided the optimal number 

Research in context

Evidence before this study
We searched PubMed, Scopus, and medRxiv from Jan 9 to 
Sept 30, 2020, using the terms [“COVID-19” OR “SARS-CoV-2”] 
AND [“phenotypes” OR “clinical features”], with no language 
restrictions, to detect any published study identifying and 
characterising phenotypes among patients with COVID-19. 
We found one study that identified three phenotypes in a 
cohort of 85 patients admitted to the intensive care unit, which 
were correlated with mortality, and one preprint study in which 
phenotypes were investigated in ambulatory patients with 
self-declaration of symptoms. We also found studies referring 
to distress syndrome-associated phenotypes or 
hyperinflammatory phenotypes.

Added value of this study
To our knowledge, this is the first study investigating the 
existence and characterisation of clinical phenotypes for 
COVID-19 patients at hospital admission. We identified three 
distinct clinical phenotypes on the basis of demographics, 
underlying conditions, clinical and laboratory data, and 

radiological features at presentation among patients 
admitted to hospital with COVID-19. The phenotypes 
were shown to have clinical implications, since they 
were associated with patient prognosis. Furthermore, 
we developed and validated a simplified probabilistic model 
for phenotype assignment. This model is available as a tool 
online to facilitate the probabilistic classification of patients 
with COVID-19 who are admitted to hospital into 
phenotypes.

Implications of all the available evidence
Identification of COVID-19 phenotypes allows investigation 
of potential differences in their underlying pathophysiological 
mechanisms, which could allow better pathogenesis-targeted 
approaches for therapies in the design and selection of 
participants in clinical trials, depending on the mechanism of 
action of specific drugs and their use in clinical management. 
Furthermore, phenotype assignment would be helpful in 
identifying low-risk patients and patients who might need 
closer monitoring during admission.

http://fen-covid.com/index.html
http://fen-covid.com/index.html
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of clusters. We used silhouette analysis to assess the 
quality of the cluster derivation. We did a sensitivity 
analysis excluding variables with more than 50% missing 
data.

Features of the patients in the phenotypes obtained were 
compared using χ² test and Kruskal-Wallis test for 
categorical and continuous variables, respectively. We 
visualised the patterns of distribution of the variables in 

Phenotype A vs phenotype C Phenotype B vs phenotype C

OR (95% CI) p value OR (95% CI) p value

Demographics

Age (per year) 0·92 (0·90–0·93) <0·0001 0·96 (0·95–0·97) <0·0001

Female sex 1·79 (1·27–2·54) 0·0014 1·32 (0·97–1·82) 0·089

Race or ethnicity

White 0·48 (0·06–4·16) 0·50 0·48 (0·06–3·62) 0·48

Black 0·80 (0·04–17·20) 0·89 0·10 (0·01–2·29) 0·15

Hispanic 2·08 (0·20–21·48) 0·54 1·08 (0·12–9·74) 0·94

Asian 0·20 (0·01–6·66) 0·37 0·55 (0·03–9·68) 0·68

Arab 0·50 (0·03–7·45) 0·61 0·40 (0·03–4·82) 0·47

Other 1 (ref) ·· 1 (ref) ··

Comorbidities

Chronic heart disease 0·12 (0·08–0·17) <0·0001 0·23 (0·17–0·31) <0·0001

Hypertension 0·08 (0·05–0·12) <0·0001 0·19 (0·12–0·28) <0·0001

Chronic lung disease 0·19 (0·12–0·29) <0·0001 0·54 (0·39–0·74) <0·0001

Asthma 1·75 (0·83–3·66) 0·14 1·73 (0·87–3·44) 0·12

Chronic kidney disease (stage 4) 0·05 (0·03–0·10) <0·0001 0·06 (0·04–0·09) <0·0001

Liver cirrhosis 0·76 (0·23–2·56) 0·65 0·75 (0·26–2·13) 0·59

Chronic neurological disease 0·45 (0·27–0·76) 0·0031 0·65 (0·43–1·00) 0·057

Active solid malignancy 0·63 (0·34–1·17) 0·14 0·73 (0·43–1·24) 0·21

Active haematological malignancy 0·83 (0·29–2·43) 0·74 0·90 (0·35–2·29) 0·82

HIV/AIDS 1·52 (0·17–14·29) 0·71 1·92 (0·26–14·29) 0·53

Obesity (body-mass index >30 kg/m²) 0·28 (0·18–0·45) <0·0001 0·52 (0·37–0·74) 0·0043

Diabetes 0·12 (0·08–0·18) <0·0001 0·31 (0·23–0·42) <0·0001

Chronic inflammatory disease 1·33 (0·62–2·84) 0·47 1·20 (0·60–2·42) 0·60

Dementia 0·19 (0·10–0·35) <0·0001 0·57 (0·38–0·87) 0·0086

Malnutrition 0·40 (0·21–0·76) 0·012 0·51 (0·31–0·86) 0·016

Smoking status

Never 2·67 (1·88–3·81) <0·0001 1·26 (0·93–1·71) 0·14

Current smoker 2·56 (1·37–4·79) 0·0037 1·11 (0·63–1·97) 0·71

Former smoker 1 (ref) ·· 1 (ref) ··

Treatments for underlying conditions

Angiotensin converting enzyme inhibitors 0·39 (0·25–0·59) <0·0001 0·76 (0·54–1·08) 0·12

Angiotensin receptor blockers 0·41 (0·27–0·62) <0·0001 0·57 (0·40–0·80) 0·0010

Inhaled corticosteroids 0·40 (0·24–0·67) <0·0001 0·79 (0·53–1·19) 0·26

Systemic corticosteroids 0·61 (0·31–1·20) 0·15 0·69 (0·39–1·23) 0·22

Cancer chemotherapy 1·15 (0·41–3·23) 0·80 1·12 (0·45–2·86) 0·80

Biological drugs 1·08 (0·42–2·78) 0·87 0·65 (0·27–1·54) 0·32

Infection data at admission

Non-focal symptoms

Reported fever 1·85 (1·27–2·63) 0·0014 2·17 (1·59–3·03) <0·0001

Temperature (per 1°C) 0·93 (0·78–1·11) 0·41 1·25 (1·06–1·46) 0·0063

Myalgia or arthralgia 2·70 (1·69–4·17) <0·0001 2·27 (1·49–3·45) <0·0001

Headache 3·03 (1·69–5·56) <0·0001 1·33 (0·76–2·33) 0·32

Skin rash 0·95 (0·18–5·00) 0·95 1·10 (0·26–4·76) 0·89

Anosmia 3·51 (0·81–15·15) 0·098 1·77 (0·42–7·41) 0·44

Altered mental status 0·25 (0·15–0·43) <0·0001 0·67 (0·45–0·99) 0·042

(Table 1 continues on next page)
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Phenotype A vs phenotype C Phenotype B vs phenotype C

OR (95% CI) p value OR (95% CI) p value

(Continued from previous page)

Inflammation

White blood cells (per 10³ cells/µL) 0·79 (0·76–0·83) <0·0001 0·83 (0·80–0·86) <0·0001

Lymphocytes (per 10³ cells/µL) 1·11 (0·97–1·28) 0·14 0·99 (0·86–1·14) 0·87

Neutrophils (per 10³ cells/µL) 0·74 (0·70–0·78) <0·0001 0·82 (0·79–0·85) <0·0001

D-dimer (per 10³ µg/L) 0·79 (0·66–0·93) 0·0050 0·98 (0·95–1·01) 0·18

Procalcitonin (per 1 ng/mL) 0·09 (0·04–0·17) <0·0001 0·52 (0·44–0·61) <0·0001

C-reactive protein (per 102 mg/L) 0·92 (0·84–1·02) 0·11 0·97 (0·95–0·99) 0·0090

IL-6 (per 10² µg/mL) 0·17 (0·11–0·27) <0·0001 1·00 (0·92–1·09) 0·97

Ferritin (per 10³ ng/mL) 0·19 (0·11–0·31) <0·0001 1·30 (0·89–1·89) 0·17

Cardiovascular

Heart rate per minute (per unit) 1·00 (0·99–1·01) 0·69 1·01 (1·00–1·02) 0·15

Systolic blood pressure (per 1 mmHg) 1·00 (0·99–1·00) 0·56 1·00 (0·99–1·00) 0·62

Diastolic blood pressure (per 1 mmHg) 1·02 (1·01–1·04) <0·0001 1·02 (1·01–1·03) <0·0001

Respiratory tract

Chest pain 1·45 (0·86–2·38) 0·16 0·98 (0·61–1·59) 0·94

Dyspnoea 0·19 (0·13–0·27) <0·0001 0·65 (0·48–0·88) 0·0061

Cough 1·22 (0·87–1·72) 0·25 1·61 (1·19–2·22) 0·0021

Expectoration 0·46 (0·32–0·68) <0·0001 0·74 (0·53–1·01) 0·055

Haemoptysis 0·51 (0·20–1·30) 0·16 0·48 (0·22–1·04) 0·062

Respiratory rate per min (per unit) 0·80 (0·77–0·83) <0·001 0·94 (0·92–0·97) <0·0001

Oxygen saturation, room air, pulse oximetry (per 
1%)

1·62 (1·55–1·70) <0·0001 1·09 (1·07–1·11) <0·0001

Oxygen saturation after oxygen supplementation 
(per 1%)

1·35 (1·26–1·45) <0·0001 1·07 (1·03–1·11) <0·0001

Oxygen saturation, room air, venous blood 
(per 1%)

1·07 (1·05–1·09) <0·0001 1·03 (1·02–1·03) <0·0001

PCO2, venous blood (per 1 mmHg) 1·01 (0·99–1·02) 0·61 0·98 (0·96–0·99) 0·022

Lung infiltrates on chest radiography

No infiltrate 3·43 (2·32–5·08) <0·0001 0·77 (0·54–1·10) 0·15

Unilateral 2·25 (1·44–3·51) <0·0001 1·16 (0·78–1·72) 0·45

Bilateral 1 (ref) ·· 1 (ref) ··

Interstitial lung infiltrate 0·48 (0·34–0·68) <0·0001 1·18 (0·88–1·59) 0·27

Ground-glass opacity infiltrate 0·74 (0·43–1·25) 0·26 1·19 (0·75–1·85) 0·46

Liver

Albumin, mean (SD; per 1 g/dL) 9·81 (6·46–14·87) <0·0001 3·37 (2·37–4·79) <0·0001

Lactic acid dehydrogenase (per 10² U/L) 0·61 (0·55–0·68) <0·0001 1·00 (0·96–1·04) 1·00

Bilirubin (per 1 mg/dL) 0·93 (0·77–1·13) 0·49 1·00 (0·96–1·04) 0·87

Renal

Creatinine (per 1 × mg/dL) 0·10 (0·07–0·15) <0·0001 0·13 (0·10–0·17) <0·0001

Sodium (per 1 × mEq/L) 1·07 (1·03–1·11) 0·0011 1·00 (0·97–1·04) 0·78

Potassium (per 1 × mEq/L) 0·25 (0·18–0·34) <0·0001 0·24 (0·18–0·31) <0·0001

Haematological

Haemoglobin (per 1 × g/dL) 1·66 (1·53–1·81) <0·0001 1·60 (1·48–1·72) <0·0001

Haematocrit (per 1%) 1·19 (1·15–1·23) <0·0001 1·16 (1·13–1·20) <0·0001

Platelets (per 10⁵/µL) 0·86 (0·76–0·99) 0·031 0·80 (0·71–0·90) <0·0001

Activated partial thromboplastin time (per 1 × s) 0·99 (0·98–1·00) 0·038 0·99 (0·99–1·00) 0·075

International normalised ratio (per unit) 0·18 (0·12–0·28) <0·0001 0·32 (0·26–0·40) <0·0001

Other

Creatine phosphokinase (per 10² × U/L) 1·01 (0·95–1·08) 0·71 1·02 (0·96–1·08) 0·50

Blood glucose (per 1 × mg/dL) 0·98 (0·98–0·98) <0·0001 0·99 (0·99–0·99) <0·0001

OR=odds ratio.

Table 1: Bivariate analysis of variables associated with phenotypes in the derivation cohort
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the different phenotypes using chord diagrams and 
heatmaps after grouping variables into comorbidities and 
system-related or organ-related data (appendix p 4). A 
two-step cluster analysis was also done in the internal 
validation cohort to check the reproducibility of phenotype 
identification.

Derivation and validation of a parsimonious 
probabilistic model for phenotypes
As the number of variables used to derive the phenotypes 
was very high, assigning patients to phenotypes was 
neither intuitive nor applicable for clinical practice. 
Therefore, we developed a simplified probabilistic model 
to assign patients into the pheno types. As we identified 
three phenotypes, we did a multinomial logistic regression 
analysis in the derivation cohort. First, we analysed the 
bivariate association of each variable of the phenotypes 
using the χ² and Kruskal-Wallis tests for categorical and 
continuous variables, respectively. Those with p<0·20 
were included in a multinomial logistic regression model; 
the variance inflation factor value was used to detect the 
potential occurrence of collinearity and interactions 
were tested. The variables were selected using a manual 
backward selection process. The ability of the final model 
to predict the phenotypes as identified by the derivation 
process was checked by calculating the area under the 
receiver operating characteristic curves (AUROC) with 
95% CIs for the three phenotypes. We also tested the 
predictive ability of the model in 60 randomly chosen 
subcohorts (using a tool in the SPM software) with 80%, 
60%, or 40% of the sample size of the derivation cohort.

The probabilistic model for phenotype assignment was 
used in two ways. First, we applied the model to the 
internal validation cohort to check its ability to predict the 
phenotypes obtained from this cohort. Second, we applied 
the model to both the internal and external validation 
cohorts to obtain a probabilistic assignment of patients to 
the phenotypes (model-derived formulae used for 
probability calculations are in the appendix p 4). Patients 
were assigned to the phenotype with the highest belonging 
probability according to the model-derived formula. We 
checked the distribution of variables among the assigned 
phenotypes.

Prognostic assessment of the phenotypes
We compared the 30-day mortality of patients in the 
different phenotypes in the derivation cohort with 
Kaplan-Meier curves and log-rank tests, and calculated 
hazard ratios (HRs) with 95% CIs. We also collected data 
on complications that occurred during treatment in 
hospital (listed in the appendix p 9). These variables were 
also analysed in the validation cohorts, in which patients 
were assigned to the phenotype with the highest 
probability according to the probabilistic model-derived 
formula. Since any association of phenotypes with 
mortality might be caused by a different distribution of a 
few strong independent prognostic variables in the 

phenotypes, such as age and oxygen saturation,4 we did a 
stratified analysis to check if any mortality association 
was maintained in all strata of these variables.

All analyses were done with IBM SPSS Statistics 26, 
SPM 8.2, and R version 3.6.0.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
The features of the patients in the cohorts used for this 
study were previously reported in detail.4,5 A two-step 
cluster analysis of variables collected at hospital admission 
identified three clinical phenotypes in the derivation 
cohort: phenotype A (516 [19%] of 2667 patients), 
phenotype B (1955 [73%] of 2667 patients), and phenotype C 
(196 [7%] of 2667 patients). The silhouette score was 0·6, 
indicating good quality of clustering. Exclusion of variables 
with a high proportion of missing data did not cause any 
evident changes (data not shown).

The baseline characteristics of the derivation and internal 
validation cohorts are present in the appendix (pp 7–12). 
Overall, patients with phenotype A were younger (mean 
age 55·2 years [SD 18·4] vs 68·7 years [15·9] and 77·2 years 
[10·9] in phenotypes B and C, respectively), were less 
frequently male (55% vs 63% and 69%), presented more 
frequently with headache (19% vs 9% and 7%), myalgia 
(29% vs 26% and 13%), and chest pain (15% vs 11% and 
11%), had higher lymphocyte count (mean 1439 cells/µL 
[SD 1761] vs 1094 cells/µL [1424] and 1096 cells/µL [1170]), 
and had lower levels of inflammatory parameters 
such as C-reactive protein, IL-6, ferritin, or lactic 
acid dehydrogenase (appendix pp 7–9). Patients with 
phenotype B more frequently reported fever (83% vs 80% 
and 69% in phenotypes A and C, respectively) and cough 
(74% vs 68% and 63%), more frequently lacked pulmonary 
infiltrates in chest radiography (20% vs 46% and 25%), 
more frequently had interstitial infiltrates (45% vs 25% and 
41%), and had higher levels of ferritin (mean 809·5 ng/mL 
[SD 588·4] vs 616·4 ng/mL [219·7] and 752·8 ng/mL 
[320·4]) and creatine phosphokinase (mean 164·3 U/L [SD 
464·0] vs 150·8 U/L [368·2] and 141·4 U/L [199·0]; appendix 
pp 7–9). Patients with phenotype C more frequently had 
chronic heart disease (56% vs 13% and 23% in phenotypes 
A and B, respectively), hypertension (86% vs 31% and 
53%), chronic lung disease (31% vs 8% and 19%), stage 4 
chronic kidney disease (34% vs 3% and 3%), obesity (body-
mass index >30 kg/m²; 23% vs 8% and 14%), diabetes (48% 
vs 10% and 22%), and acute altered mental status (18% vs 
5% and 12%); had higher levels of neutrophils (mean 
8539 cells/µL [SD 6656] vs 4112 cells/µL [2511] and 
4892 cells/µL [2844]), D-dimer (mean 1343·1 µg/L [SD 
2419·7] vs 715·8 µg/L [986·5] and 986·3 µg/L [3290·5]), 
procalcitonin (mean 0·70 ng/mL [SD 0·96] vs 0·17 ng/mL 
[0·26] and 0·27 ng/mL [0·51]), C-reactive protein (mean 
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127·1 mg/L [SD 119·8] vs 47·4 mg/L [68·3] and 88·8 mg/L 
[84·2]), creatinine (mean 2·76 mg/dL [SD 2·11] vs 
0·96 mg/dL [0·56] and 0·99 mg/dL [0·36]), and potassium 
(mean 4·5 mEq/L [SD 0·7] vs 4·0 mEq/L [0·5] and 
4·0 mEq/L [0·5]); and had poorer oxygenation parameters 
(appendix pp 7–9, figures 1, 2).

We repeated the two-step cluster analysis in the internal 
validation cohort. This analysis also selected three clusters 
with a very similar distribution of patients to the derivation 
cohort: phenotype A (233 [17%] of 1368 patients), phe no-
type B (1019 [74%] of 1368 patients), and phenotype C 
(116 [8%] of 1368 patients). The silhouette score was also 

0·6, and the distribution of variables in the phenotypes 
was as in the derivation cohort, except for the proportion of 
patients with liver cirrhosis and active solid malig nancies 
(which were not significantly different in the derivation 
cohort but were more frequent in phenotype C than in 
phenotype A or phenotype B in the internal validation 
cohort), haematological malignancy (no difference in the 
derivation cohort but less frequent in phenotype A than in 
phenotypes B and C in the internal validation cohort), and 
ferritin and creatine phosphokinase concentrations (which 
were higher in phenotype B than in phenotypes A and C in 
the derivation cohort and in phenotype C than in 

Figure 1: Chord diagram of the distribution of groups of variables in the phenotypes in the derivation cohort
Variables are grouped into categories. The phenotypes are shown in different colours: phenotype A is green, phenotype B is blue, and phenotype C is red. For each 
phenotype, if a variable mean (for continuous variables) or proportion (for categorical variables) is significantly different to the mean or proportion in the full 
derivation cohort, a ribbon connects the phenotype and the variable group. The width of the ribbons correlates with the number of variables that are significantly 
different from those in the derivation cohort for that phenotype.
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phenotypes A and B in the internal validation cohort; 
appendix pp 10–12).

To develop a simple way to assign patients to a phenotype, 
we developed and validated a parsimonious probabilistic 
model for belonging to phenotypes. We first did a bivariate 
analysis of the association of the different variables with 
phenotype A versus phenotype C and phenotype B versus 
phenotype C in the derivation cohort. We found a 
significant crude association with phenotype for many 
variables (table 1). After a variable selection process, we 
developed a final multinomial logistic regression model 
with 16 variables, including age, sex, chronic lung disease, 
obesity, diastolic blood pressure, oxygen saturation 
(room air), white blood cell count, neutrophils, haematocrit, 
coagulation international normalised ratio, C-reactive 
protein, glucose, creatinine, sodium, potassium, and type 
of lung infiltrate on chest radiograph (table 2). Therefore, 
we derived a simplified probabilistic model for patient 
assignment to phenotypes. The AUROC of the model for 
the observed data in the derivation cohort showed 
very good predictive ability for the three phenotypes 
(0·86, 95% CI 0·85–0·88 for phenotype A, 0·88, 
0·86–0·89 for phenotype B, and 0·99, 0·99–0·99 for 
phenotype C). The predictive ability was similar in smaller, 
randomly selected subcohorts (appendix p 13).

The capacity of the model to correctly assign patients to 
phenotypes was validated in the internal validation 
cohort for the phenotypes directly derived from that 
cohort. The ability of the model to predict the observed 
phenotypes in the internal validation cohort was also 
high (AUROC 0·86, 95% CI 0·84–0·89 for phenotype A; 
0·86, 0·84–0·88 for phenotype B; and 0·95, 0·93–0·98 
for phenotype C; appendix p 22).

The probabilistic model was then applied to the 
internal and external validation cohorts to obtain the 
individual probability of being assigned a specific 
phenotype. The number of patients in the internal 
validation cohort assigned to phenotypes A, B, and C 
according to their highest probability were 263 (19%), 
1021 (75%), and 84 (6%), respectively (appendix 
pp 14–15). The corresponding figures for the external 
validation cohort were 323 (15%), 1757 (80%), and 
105 (5%; appendix p 16). In the internal validation 
cohort, the distribution of all variables in the three 
predicted phenotypes was similar to that in the 
derivation cohort (appendix pp 14–15). For the external 
validation cohort, not all variables collected in the 
derivation cohort were available. Therefore, we checked 
the distribution of the variables included in the model, 
which was similar to that in the derivation cohort 
(appendix p 16).

In the derivation cohort, 30-day mortality rates were 
2·5% (95% CI 1·4–4·3) for patients with phenotype A, 
30·5% (28·5–32·6) for patients with phenotype B, and 
60·7% (53·7–67·2) for patients with phenotype C (figure 3; 
appendix p 17). In the internal validation cohort, the 
mortality in the reproduced phenotypes was 2·6% 

(95% CI 1·0–5·6) for phenotype A, 31·0% (28·2–33·9) for 
phenotype B, and 53·4% (44·4–62·2) for phenotype C 
(appendix p 17). Regarding the phenotypes assigned on the 
basis of the probabilistic model, the mortality rates in the 
internal validation cohort were 5·3% (95% CI 3·4–8·1) 
for phenotype A, 31·3% (28·5–34·2) for phenotype B, 
and 59·5% (48·8–69·3) for phenotype C (figure 3; 
appendix p 17) and in the external validation cohort were 
3·7% (2·0–6·4) for phenotype A, 23·7% (21·8–25·7) for 
phenotype B, and 51·4% (41·9–60·7) for phenotype C (the 
external validation cohort only had in-hospital mortality 
and not 30-day mortality data; figure 3; appendix p 17). All 
mortality data are summarised in the appendix (p 17).

The proportion of patients in the derivation cohort who 
needed intensive care unit care or had transfusion-
requiring anaemia, pleural effusion, acute kidney failure, 

Figure 2: Heatmap of the distribution of continuous variables in the 
phenotypes in the derivation cohort
A colour gradient is used to show differences in mean values in relation to the 
full derivation cohort, towards red for higher values and blue for lower values. 
The colour gradient indicates the number of SDs that the mean value in the 
subcohort of interest is below or above the mean value in the full cohort.
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heart failure, bacterial pneumonia, acute respiratory 
distress syndrome, or cardior espiratory arrest during 
admission was significantly increased in phenotype C 
compared with phenotypes A and B and significantly 
decreased in phenotype A compared with phenotypes B 
and C; differences were not significant for stroke, 
ischaemic coronary event, liver failure, or disseminated 
intravascular coagulation (appendix pp 7–9). Results were 
similar in the internal validation cohort, with the exception 
that liver failure was more frequent in phenotype B 
(appendix p 15).

To check whether the association of the phenotypes 
with mortality was maintained after considering 
different distributions of strong mortality predictors 
across the phenotypes, such as age and oxygen 
saturation, we did a stratified analysis per strata of these 
variables in the derivation cohort. In all strata, 
phenotypes were significantly associated with mortality 
(appendix p 18).

Discussion
We identified three phenotypes based on demographics, 
underlying conditions, clinical and laboratory data, and 
radiological features at presentation among patients 
admitted to hospital with COVID-19. The phenotypes, 
despite not intended to be used for predicting mortality, 
had clinical implications, as we observed associations 
with patient prognosis. We also developed a simplified 
probabilistic model that is potentially applicable to other 
cohorts.

Clinical presentation of COVID-19 is polymorphic. 
Clinical phenotypes have been described for patients 
with severe acute respiratory distress with potential 
implications for respiratory support therapy.9 Phenotypes 
based only on self-declaration of symptoms by non-
hospitalised patients with COVID-19 using an app have 
been reported.10 Clinical phenotypes have been identified 
in patients with sepsis,11 and a so-called hyperinflammatory 
phenotype has been proposed in patients with 
COVID-19.12,13 However, to our knowledge, only one other 
study14 has specifically investigated the existence of diverse 
clinical phenotypes for patients with COVID-19 at hospital 
admission; three phenotypes were also identified in that 
study14 on the basis of clinical and laboratory features, 
using hierarchical clustering in 85 patients admitted to 
the intensive care unit, with a small number of variables.

In our study, the phenotypes we identified were 
associated with patient prognosis. By contrast with 
studies that generate outcome prediction scores or 
identify outcome predictors, in which the independent 
predictive association of each variable with the outcome 
is assessed, phenotypes provide information about how 
the population can be classified according to clustering 
of variables and how such clusters are associated with the 
outcome. As age and oxygen saturation are strong 
independent predictors of mortality,4 we did a stratified 
analysis of these variables. The results of this analysis 
suggest that the association of phenotypes with mortality 
is not only due to the different distribution of these 
variables in the phenotypes, but that the phenotypes are 

Phenotype A vs phenotype C Phenotype B vs phenotype C

OR (95% CI) p value OR (95% CI) p value

Age (per year) 0·93 (0·90–0·96) <0·0001 0·96 (0·93–0·99) 0·0051

Female sex 0·68 (0·33–1·41) 0·30 0·44 (0·22–0·89) 0·021

Chronic lung disease 0·55 (0·26–1·16) 0·10 0·79 (0·42–1·54) 0·48

Obesity (body-mass index >30 kg/m²) 0·49 (0·20–1·23) 0·12 0·71 (0·31–1·64) 0·42

White blood cells (per 10³ cells/µL) 0·80 (0·73–0·87) <0·0001 0·73 (0·68–0·79) <0·0011

Neutrophils (per 10³ cells/µL) 0·89 (0·80–0·99) 0·032 0·99 (0·90–1·08) 0·86

C-reactive protein (per 10² mg/L) 0·95 (0·91–1·00) 0·055 0·94 (0·90–0·99) 0·011

Diastolic blood pressure (per 1 mmHg) 1·03 (1·01–1·05) 0·011 1·02 (1·01–1·04) 0·013

Oxygen saturation, room air, pulse oximetry (per 1%) 1·56 (1·46–1·66) <0·0001 1·11 (1·07–1·16) <0·0001

Lung infiltrate on chest radiography

No infiltrate 4·07 (1·83–9·02) 0·00055 1·17 (0·55–2·49) 0·69

Unilateral 3·50 (1·51–8·06) 0·0032 2·05 (0·93–4·51) 0·071

Bilateral 1 (ref) ·· 1 (ref) ··

Creatinine (per 1 mg/dL) 0·09 (0·05–0·15) <0·0001 0·06 (0·04–0·10) <0·0001

Sodium (per 1 mEq/L) 1·09 (1·02–1·17) 0·010 1·04 (0·98–1·11) 0·14

Potassium (per 1 mEq/L) 0·37 (0·21–0·67) 0·00093 0·26 (0·15–0·45) <0·0001

Haematocrit (per 1%) 1·29 (1·21–1·38) <0·0001 1·27 (1·19–1·35) <0·0001

International normalised ratio (per unit) 0·12 (0·07–0·22) <0·0001 0·12 (0·08–0·18) <0·0001

Blood glucose (per 1 mg/dL) 0·99 (0·98–0·99) <0·0001 0·99 (0·98–0·99) <0·0001

The variance inflation factor value was less than 2 in all cases. OR=odds ratio.

Table 2: Multinomial logistic regression model for the prediction of phenotypes in the derivation cohort
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consistently associated with different mortality risks. 
However, the phenotypes are not expected to provide 
accurate prediction of prognosis, as done by predictive 
modelling, as the outcome rates in the phenotypes 
depend on the exact distribution of the strongest outcome 
predictors in each population to which the phenotypes 
are applied. In this sense, phenotypes are complementary 
to predictive scores. Beyond that, the phenotypes 
might reflect different profiles of pathogen and host 
interactions, as a consequence of different infecting viral 
load, natural or acquired humoral and cellular immune 
response against SARS-CoV-2, or cell–receptor features 
and expression, alongside host genetic background.6–8 
Since the databases used in this study only included 
phenotypic profiles and manifestations, we cannot 
provide information about underlying immunological or 
virological mechanisms. Future studies could reproduce 
the phenotypes and investigate their correlations with 
virological, immunological, and genetic data.

We did not analyse the duration of disease at hospital 
admission because the start of symptoms can be difficult 
to assess in many patients and can be confused with 
manifestations related to chronic conditions; in our 
experience, this is particularly frequent in older patients 
with comorbidities. The duration of symptoms could be 
relevant to differentiate between the viral and infla-
mmatory phases of the disease,13 but a clear cutoff in the 
number of days to differentiate between the phases 
cannot currently be defined.

Classification of patients into phenotypes might be 
useful to design treatment strategies. Very low-risk patients 
(eg, those with phenotype A who are younger than 60 years 
or with oxygen saturation >95%), who would need lower 
degrees of watchfulness and care, might be identified and 
discharged for ambulatory follow-up. Patients without 
initial criteria for being admitted to the intensive care unit 
but with phenotype B or phenotype C could be closely 
monitored during admission. As some aspects of the 
pathophysiology of the infection in patients with different 
phenotypes might be different, the therapeutic approach 
might need to be tailored on a patient-by-patient basis.15 
Since phenotype C comprises patients with laboratory 
parameters suggestive of a hyperinflammatory state, such 
patients might be selected to investigate the efficacy 
of anti-inflammatory drugs. This strategy would allow 
more specific and efficient design of randomised trials. 
However, whether these phenotypes are useful for clinical 
purposes requires further investigation of the underlying 
mechanisms and more specific studies.

Since the phenotypes were identified using a high 
number of variables, it would be difficult to apply 

Figure 3: Probability of death up to day 30 according to phenotypes in the 
derivation cohort (A), internal validation cohort (B) and external validation 
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them clinically in the absence of automated big data 
management. Therefore, we developed and validated a 
simplified probabilistic prediction model for phenotype 
assignment. A publicly available calculator and app have 
been developed to facilitate the classification of patients 
admitted to hospital with COVID-19 into phenotypes, 
using the probabilistic model for phenotype assignment.

Limitations of our study are the high proportion of 
patients classified into phenotype B, reflecting the 
profile of the patients admitted during the first weeks 
of the epidemic in saturated hospitals, the exclusive 
participation of Spanish hospitals, and the high proportion 
of missing data for several variables. Hospital admission 
criteria might be different in other countries or at different 
times during the pandemic; however, the cohorts we used 
included patients with varying severity of disease. Some 
symptoms might not have been reported by the most 
severely ill patients. Finally, the phenotypes were derived 
and validated at hospital admission and would be useful 
for decisions at that time; whether changes in evolution 
due to the natural history of the disease or the influence of 
treatments modify the phenotype assignment needs 
further study. Strengths of our study include the use of 
well characterised cohorts, the inclusion of a high number 
of variables from different domains, and the validation.

In conclusion, patients admitted to hospital with 
COVID-19 can be classified into phenotypes that have 
prognostic implications. We developed a simplified tool 
for the probabilistic classification of patients into pheno-
types. Further studies are needed to elucidate the 
underlying pathophysiological mechanisms leading to a 
particular phenotype.
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